Abstract
MiR‐17‐92 has a vital effect on the adjustment of the Myc/E2F protein in chemistry. In this work, we propose a novel fractional‐order delayed Myc/E2F/miR‐17‐92 network model that revels the relation between miR‐17‐92, E2F, and Myc. Taking advantage of Laplace transform, we obtain the characteristic equation of the established fractional‐order delayed Myc/E2F/miR‐17‐92 network model. By virtue of stability theorem and bifurcation criterion of fractional‐order dynamical equation, a novel delay‐independent condition guaranteeing the stability and the generation of bifurcation phenomenon of the involved model is acquired. By exploiting a proper extended mixed controller (including controller and delayed feedback controller), we efficiently control the stability domain and the emergence of bifurcation for the the involved model. By utilizing another suitable extended mixed controller (including controller and hybrid controller), we can successfully adjust the stability domain and the emergence of bifurcation for the the involved model. The research indicates that delay plays a vital role in stabilizing system and controlling bifurcation of the fractional‐order delayed Myc/E2F/miR‐17‐92 network model. Computer experiment results illustrate the scientificity of the gained key analytical outcomes. The acquired results in this research are totally innovative and own immense theoretical meaning in regulating the concentrations of different proteins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.