Abstract

Horses have a slow rate of muscle glycogen repletion relative to other species for unknown reasons. Our aim was to determine the expression of glucose transporters (GLUT) and genes impacting GLUT4 expression and translocation in the gluteal muscle. Five fit Thoroughbred horses performed glycogen-depleting exercises on high-starch (HS, 2869 g starch/day) and low-starch, high-fat diets (LS-HF, 358 g starch/d) with gluteal muscle biopsies obtained before and after depletion and during repletion. Muscle glycogen declined by ≈30% on both diets with little increase during repletion on LS-HF. Transcriptomic analysis identified differential expression (DE) of only 2/12 genes impacting GLUT4 translocation (two subunits of AMP protein kinase) and only at depletion on LS-HF. Only 1/13 genes encoding proteins that promote GLUT4 transcription had increased DE (PPARGC1A at depletion LS-HF). GLUT4 comprised ≈30% of total GLUT mRNA expression at rest. Remarkably, by 72 h of repletion expression of GLUT3, GLUT6 and GLUT10 increased to ≈25% of total GLUT mRNA. Expression of GLUT6 and GLUT10 lagged from 24 h of repletion on HS to 72 h on LS-HF. Lacking an increase in GLUT4 gene expression in response to glycogen-depleting exercise, equine muscle increases GLUT3, GLUT6 and GLUT10 expression potentially to enhance glucose transport, resembling responses observed in resistance trained GLUT4-null mice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.