Abstract

Electrocardiographic imaging (ECGI) systems are still plagued by a myriad of controllable and uncontrollable sources of error, which makes studying and improving these systems difficult. To mitigate these errors, we developed a novel experimental preparation using a rigid pericardiac cage suspended in a torso-shaped electrolytic tank. The 256-electrode cage was designed to record signals 0.5-1.0 cm above the entire epicardial surface of an isolated heart. The cage and heart were fixed in a 192-electrode torso tank filled with electrolyte with predetermined conductivity. The resulting signals served as ground truth for ECGI performed using the boundary element method (BEM) and method of fundamental solutions (MFS) with three regularization techniques: Tikhonov zero-order (Tik0), Tikhonov second-order (Tik2), truncated singular value decomposition (TSVD). Each ECGI regularization technique reconstructed cage potentials from recorded torso potentials well with spatial correlation above 0.7, temporal correlation above 0.8, and root mean squared error values below 0.7 mV. The earliest site of activation was best identified by MFS using Tik0, which localized it to within a range of 1.9 and 4.8 cm. Our novel experimental preparation has shown unprecedented agreement with simulations and represents a new standard for ECGI validation studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.