Abstract
In this study, generalized Jacobi elliptic function method is implemented to strain wave equation in microstructure solids (SWEMSS). This method is based on the elliptic equation which is a powerful equation and has abundant of elliptic function solutions. This study found new doubly periodic wave solutions. These doubly periodic wave solutions degenerated as single periodic solutions when m→0 and solitary wave solutions when m→1. The new obtained single periodic solutions and solitary wave solutions of the SWEMSS could help in the understanding of the phenomena in which waves are governed by such equation. We also presented graphical movement of few obtained solutions by using different values for parameters involved in the solutions. Also, the aspects of stability analysis for the considered equations is investigated using the linear stability technique.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica A: Statistical Mechanics and its Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.