Abstract

Carbohydrate- and oligoethylene oxide-based surfactants behave quite differently despite the fact that they are both classes of nonionic surfactants. Intensive studies of a mixture at fixed molar ratio (1:1) of two very common sugar- and oligoethylene oxide-based surfactants, namely n-dodecyl-β-d-maltoside (β-C12G2) and n-dodecyl hexaethylene oxide (C12E6), revealed that most properties of the mixture are similar to those of the oligoethylene oxide-based surfactant. In the present work, this mixture is compared to respective “hybrid surfactants”. Such hybrid surfactants are surfactants whose head group contains chemically linked carbohydrate and oligoethylene oxide units. In order to study the behaviour of this sort of compounds, we synthesised a new class of surfactants whose head group consists of one carbohydrate-like unit (myo-inositol) and three ethylene oxide units. New regiochemically defined ethoxylated inositol derivatives (referred to as C12I1E3 and C12E3I1 in the following) were synthesised and studied for their thermotropic and lyotropic liquid crystalline properties as well as for their surface activities. The results are compared with those of the reference systems β-C12G2 and C12E6, and their 1:1 mixture, respectively, and are discussed in terms of structure–property relations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.