Abstract
Pancreatic cancer (PCa) is one of the leading causes of morbidity worldwide, and theranostic approaches are ventured. The vast stroma surrounding PCa cells has been proven to play a pivotal role in tumor growth and invasion, sequestering chemotherapeutic drugs and reducing their delivery to tumor cells. By exploiting the enhanced permeability and retention (EPR) effect, nanotechnology has risen to the top of medical imaging and therapeutic modalities. The EPR effect is now considered a promising approach for delivering drug-loaded nanostructures to tumors. However, its application is limited due to a disordered vascular network and blocked or embolized blood vessels. Desmoplastic tumors have a dense stroma, so the permeability of the particles into the tumor is low, and these tumors are resistant to nanoparticle-based chemotherapy. There are several strategies for improving the EPR effect by modulating tumor blood vessels, angiogenesis, vascular structure, blood flow, and other factors affecting EPR. Furthermore, by modulating tumor vessels using nanostructures (i.e., nanoparticles (NPs), liposomes, micelles, polymers, nano-biomimetics, etc.) for drug delivery, the EPR effect can be significantly improved. This review will focus on the possible uses of nanostructures to deliver therapeutic drugs for PCa imaging and treatment via the EPR-mediated effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.