Abstract

The N-terminal segment of the Semliki Forest virus polyprotein is an intramolecular serine protease that cleaves itself off after the invariant Trp267 from a viral polyprotein and generates the mature capsid protein. After this autoproteolytic cleavage, the free carboxylic group of Trp267 interacts with the catalytic triad (His145, Asp167 and Ser219) and inactivates the enzyme. We have deleted the last 1–7 C-terminal residues of the mature capsid protease to investigate whether removal of Trp267 regenerates enzymatic activity. Although the C-terminally truncated polypeptides do not adopt a defined three-dimensional structure and show biophysical properties observed in natively unfolded proteins, they efficiently catalyse the hydrolysis of aromatic amino acid esters, with higher catalytic efficiency for tryptophan compared to tyrosine esters and k cat /K M values up to 5 × 10 5 s −1 M −1. The enzymatic mechanism of these deletion variants is typical of serine proteases. The pH enzyme activity profile shows a p K a1 = 6.9, and the Ser219Ala substitution destroys the enzymatic activity. In addition, the fast release of the first product of the enzymatic reaction is followed by a steady-state second phase, indicative of formation and breakdown of a covalent acyl-enzyme intermediate. The rates of acylation and deacylation are k 2 = 4.4±0.6 s −1 and k 3 = 1.6±0.5 s −1, respectively, for a tyrosine derivative ester substrate, and the amplitude of the burst phase indicates that 95% of the enzyme molecules are active. In summary, our data provide further evidence for the potential catalytic activity of natively unfolded proteins, and provide the basis for engineering of alphavirus capsid proteins towards hydrolytic enzymes with novel specificities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call