Abstract

Surface texturing on cutting tools has a great influence on reducing the friction force between tool and chip interfaces. In this study, a grinding method was developed to fabricate micro-groove textures on cutting tools using a special diamond grinding wheel on the tool rake face. A comparative experiment was done using a laser and other grinding method to fabricate micro-grooves. The developed grinding method does not produce harmful gases, it is environmentally friendly, and it fabricates groove textures with high efficiency and quality. Various micro-grooves with depths of 30–90 µm, groove pitches of 0.5–1 mm, and groove angles of 30–60o were made on the rake faces of non-coated end-mill tools using the developed grinding method. Milling experiments on aluminum alloy (Al6061-T6) and tool steel (SKD11) with non-water-soluble coolant were carried out using the textured tools, and the cutting force and tool wear were investigated. In most cases, the cutting force produced by the micro-grooved tools is significantly reduced. In addition, the wear resistance of the micro-groove cutting tool is better than that of a conventional cutting tool, and there is no chipping.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call