Abstract

Congenital vertebral malformations caused by embryonic segmentation defects are relatively common in humans and domestic animals. Although reverse genetics approaches in mice have provided information on the molecular mechanisms of embryonic somite segmentation, hypothesis-driven approaches cannot adequately reflect human dysmorphology within the population. In a N-ethyl-N-nitrosourea (ENU) mutagenesis project in Kyoto, the Oune mutant rat strain was isolated due to a short and kinked caudal vertebra phenotype. Skeletal staining of heterozygous rats showed partial loss of the cervical vertebrae as well as hemivertebrae and fused vertebral blocks in lumbar and sacral vertebrae. In homozygous embryos, severe displacement of the whole vertebrae was observed. The Oune locus was genetically mapped to rat chromosome 1 using 202 backcross animals and 50 genome-wide microsatellite markers. Subsequently, a miss-sense mutation in the Tbx6 gene was identified in the critical region. Although the mutation is located within the T-box domain near a predicted dimmer-interface, in vitro experiments revealed that the Tbx6 variant retains normal DNA binding ability and translational efficiency. However, the variant has decreased transcriptional activation potential in response to Notch-mediated signaling. Recently, it was reported that a dominant type of familial spondylocostal dysostosis is caused by a stoploss mutation in TBX6. Thus, we propose that partial dysfunction of Tbx6 leads to similar congenital vertebral malformations in both humans and rats. The Oune strain could be a unique animal model for dominant spondylocostal dysostosis and is useful for molecular dissection of the pathology of congenital vertebral malformations in humans.

Highlights

  • The vertebral column provides structural strength and flexibility to the body

  • The isoleucine is exchanged to valine or leucine in ascidian Tbox genes, they are, like isoleucine, hydrophobic amino acids. These results strongly indicate that Oune is an allele of Tbx6, and we renamed Oune as Tbx6Oune

  • The Oune locus was mapped to rat chromosome 1 by linkage analysis

Read more

Summary

Introduction

The vertebral column provides structural strength and flexibility to the body. It is derived from somites, the bilateral segmented structures in the embryo [1]. Defects in somitogenesis cause severe congenital vertebral malformations [3]. Many spontaneous mutant lines with vertebral malformations have been collected and intensively analyzed [4]. Knockout mouse lines with defects in somitogenesis have been generated by genetic engineering. This increased knowledge of the molecular mechanisms of vertebral segmentation contributes to the positional candidate cloning of causative genes for familial vertebral malformations in humans [5]

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.