Abstract

Wastewater treatment plants (WWTPs) generate useful data, but effectively utilizing these data remains a challenge. This study developed novel ensemble tree-based models to enhance real-time predictions of chemical oxygen demand (COD) and total nitrogen (TN) concentrations, which are difficult to monitor directly. The effectiveness of these models, particularly the Voting Regressor, was demonstrated by achieving excellent predictive performance even with the small, volatile, and interconnected datasets typical of WWTP scenarios. By utilizing real-time sensor data from the anaerobic–anoxic–oxic (A2O) process, the model successfully predicted COD concentrations with an R2 of 0.7722 and TN concentrations with an R2 of 0.9282. In addition, a novel approach was proposed to assess A2O process performance by analyzing the correlation between the predicted C/N ratio and the removal efficiencies of COD and TN. During a one and a half year monitoring period, the predicted C/N ratio accurately reflected changes in COD and TN removal efficiencies across the different A2O bioreactors. The results provide real-time COD and TN predictions and a method for assessing A2O process performance based on the C/N ratio, which can significantly aid in the operation and maintenance of biological wastewater treatment processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.