Abstract

Despite the upsurging interest in electrochemiluminescence (ECL) of lanthanides, the research in this field is still in its infancy due to the low intensity. In this work, a series of Ce3+-doped terbium orthophosphates (TbPO4:Ce) in different proportions have been synthesized through the co-precipitation method at room temperature. Meanwhile, through the investigation of morphologies and ECL properties of these TbPO4:Ce, it is concluded that the ECL intensity reaches the maximum when the molar ratio of Tb/Ce is 9:1 and the material is nanorod-shaped. The ECL intensity of TbPO4:Ce is significantly improved by doping with Ce3+ due to the dual sensitization strategy of the antenna effect from PO43- to Tb3+ and the energy transfer from Ce3+ to Tb3+. Interestingly, doping with Ce3+ can not only adjust morphology of TbPO4:Ce but also improve the ECL intensity. In addition, to verify the application of TbPO4:Ce, two single mucin1 (MUC1) aptamers are linked together to form a dual MUC1 aptamer chain. Then, a simple and sensitive ECL biosensor is constructed for the detection of MUC1, which can recognize the double amount of MUC1 and quench the ECL signal. As expected, the proposed biosensor shows good stability and acceptable selectivity and achieves sensitive detection of MUC1 with a dynamic range from 1 fg·mL-1 to 10 ng·mL-1 and a limit of detection of 0.5 fg·mL-1. This work may pave a new avenue for the study of direct ECL emission of lanthanides and prove to be ideal for the research of new ECL luminophores in electrochemical analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.