Abstract
Protein nanocages resemble natural biomimetic carriers and can be engineered to act as targeted delivery systems, making them an attractive option for various drug delivery and biomedical applications. Our research investigated the genetic link of a specific anti-HER2 peptide (LTVSPWY) to the exposed N-terminal region of the maize (Zea mays) ferritin 1 (ZmFer1) protein nanocage, employing either a 7-amino acid (for LTVS-ZmFer1) or 16-amino acid (for LTVS-L-ZmFer1) linker. We utilized a heat treatment method to load the chemotherapeutic drug doxorubicin into the protein nanocage. The construct with the longer linker (LTVS-L) produced a greater amount of soluble protein nanocage and was selected for further experiments. The average size, polydispersity index, and zeta potential of the engineered protein nanocage were 19.01nm, 0.168, and - 2.13 mV, respectively. The LTVS-L-ZmFer1 protein nanocage exhibited excellent thermal stability, withstanding temperatures up to 100°C with only partial denaturation. Furthermore, we observed that cellular uptake of the LTVS-L-ZmFer1 protein nanocages in HER2-positive breast cancer cells was significantly higher compared to ZmFer1 after labeling with FITC (fluorescein isothiocyanate) (P-value = 0.0001). In addition, we observed a significant decrease in the viability of SKBR3 cells when treated with DOX-loaded LTVS-L-ZmFer1 protein nanocages compared to cells treated with DOX-loaded ZmFer1 protein nanocages. Therefore, this new treatment strategy may prove to be an effective way to reduce both the side effects and toxicity associated with conventional cancer treatments in patients with HER2-positive breast cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.