Abstract

IntroductionThe aim of this study was to test a new disinfection technology using biomimetic iron oxide nanoparticles (IO-NPs) with peroxidaselike activity to enhance antibacterial activity on root canal surfaces and in dentinal tubules. MethodsThe canal surfaces and dentinal tubules of single-rooted intact extracted teeth were infected by growing Enterococcus faecalis biofilms for 3 weeks. The samples were divided into 6 treatment groups: (1) phosphate-buffered saline (PBS) (negative control), (2) 3% hydrogen peroxide (H2O2) (test control), (3) IO-NPs (0.5 mg/mL) (test control), (4) IO-NPs (0.5 mg/mL) + 3% H2O2, (5) 3% sodium hypochlorite (positive control), and (6) 2% chlorhexidine (positive control). Environmental scanning electron microscopy coupled with energy-dispersive spectroscopy was used to confirm IO-NPs binding to the canal surface after a single treatment. Specimens were labeled with fluorescent staining for live/dead cells, and confocal laser scanning microscopy was used for the quantification of dead bacteria relative to the negative control (PBS). ResultsBoth biofilm formation and dentinal tubule infection were successfully recapitulated using the in vitro model. IO-NPs were capable of binding to the infected canal surfaces despite a single, short-term (5-minute) treatment. IO-NP activation of H2O2 killed significantly more E. faecalis present on the canal surfaces and at different depths of dentinal tubules when compared with all other experimental groups (P < .05–.0005). ConclusionsThe results reveal the potential to exploit nanocatalysts with enzymelike activity as a potent alternative approach for the treatment of endodontic infections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.