Abstract
This paper focuses on comparing two means and finding a confidence interval for the difference of two means with right-censored data using the empirical likelihood method combined with the independent and identically distributed random functions representation. In the literature, some early researchers proposed empirical link-based confidence intervals for the mean difference based on right-censored data using the synthetic data approach. However, their empirical log-likelihood ratio statistic has a scaled chi-squared distribution. To avoid the estimation of the scale parameter in constructing confidence intervals, we propose an empirical likelihood method based on the independent and identically distributed representation of Kaplan-Meier weights involved in the empirical likelihood ratio. We obtain the standard chi-squared distribution. We also apply the adjusted empirical likelihood to improve coverage accuracy for small samples. In addition, we investigate a new empirical likelihood method, the mean empirical likelihood, within the framework of our study. The performances of all the empirical likelihood methods are compared via extensive simulations. The proposed empirical likelihood-based confidence interval has better coverage accuracy than those from existing methods. Finally, our findings are illustrated with a real data set.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.