Abstract

A new electromagnetic actuation (EMA) method is proposed for 3-dimensional locomotion of a microrobot. Generally, the EMA system uses Helmholtz coils and Maxwell coils. The Helmholtz coil pair generates a uniform magnetic flux density and the Maxwell coil pair generates a uniform gradient magnetic flux. The microrobot can be aligned to the desired direction by the Helmholtz coils and then, be propelled in the aligned direction by the Maxwell coils. However, many previous EMA systems have been restricted to 2-dimensional planar actuation. The EMA system proposed in this paper consists of a pair of stationary Helmholtz–Maxwell coils and a pair of rotational Helmholtz–Maxwell coils. This new EMA system can manipulate a microrobot in 3-dimensional space. For accurate actuation of a microrobot, the gravitational force, which influences the motion of microrobot, has to be analyzed and compensated. Through various experiments, the performance of the proposed EMA system was evaluated. Finally, a microrobot was test-driven in a blood vessel phantom, and the result of the test drive verified the feasibility of 3-dimensional motion of a microrobot by the new EMA system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.