Abstract

A novel magnetic-controlled electrochemical sensor has been fabricated by combined photo-responsive surface molecular imprinted polymers (P-SMIPs) and electrochemical sensor. In particular, the P-SMIPs were obtained by living radical polymerization of photo-responsive functional monomer onto the magnetic Fe3O4 modified multi-walled carbon nanotubes nanocomposites. The magnetic glassy carbon electrode was introduced to make the anchoring and removal of P-SMIPs onto the magnetic-controlled glassy carbon electrode easy to manipulate. Driven by UV/vis light, the platform performs releasing and absorption of metronidazole basing on conformational variations of the photo-responsive monomer at the receptor sites part in the P-SMIPs. This process can be tested by the photo-responsive variations of metronidazole electrochemical signal. As the consequence, extracting of P-SMIPs sensor can be conveniently triggered by the controllable UV light intervention measure, leading to effectively improve in both analytes mass transfer rate to the receiving media and extraction efficiency. The experimental result indicated that the excellent recoveries of metronidazole were varied between 77.9% and 89.9% with RSDs ≤4.87% in the biological samples. Therefore, the P-SMIPs sensor shows satisfactory potential in reusable extractions that can be recycled several times with no significant loss of activity, and this utilization strategy can be extended to other analytes, achieving manifold applications of pharmaceutical and environmental.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.