Abstract
An electrochemical method has been successfully demonstrated for sensitive determination of homocysteine (HcySH) with carbon nanotube (CNT)-modified glassy carbon (GC) electrodes. Cyclic voltammetric results clearly show that carbon nanotubes, especially those pretreated with nitric acid, possess an excellent electrocatalytic activity toward the oxidation of HcySH at a low potential (0.0 V versus Ag/AgCl). The remarkable catalytic property of the acid-pretreated CNTs, which is essentially associated with oxygen-containing moieties introduced on the tube surface, has been further exploited as a sensitive determination scheme for HcySH. Continuous-flow amperometric results suggest that the CNT-based electrodes (p-CNT/Nafion/GC), which were prepared by using Nafion to solubilize and further immobilize CNTs on GC electrodes, show striking analytical properties of good stability and reproducibility and strong ability against electrode fouling. Such analytical properties, along with the low operation potential, substantially enable a reliable and sensitive determination of HcySH with a good dynamic linearity up to 60 μM and a detection limit of 0.06 μM (S/N=3). The catalytic mechanism and the possible application of the as-prepared p-CNT/Nafion/GC electrodes for the study of the auto-oxidation of HcySH are also demonstrated and discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.