Abstract

A new magneto-controlled electrochemical immunosensing system was developed for the sensitive detection of low-abundance protein (IgG1 used in this case) with a sandwich-type assay format on monoclonal mouse anti-human Fab-specific IgG1-functionalized magnetic bead. Metal sulfide (CdS) quantum dot-doped bovine serum albumin (QD-BSA) was synthesized and functionalized with monoclonal Fc-specific anti-human antibody. In the presence of IgG1, the immobilized antibody on magnetic bead was selective to capture the Fab region of the analyte, followed to be sandwiched by the conjugated antibody onto QD-BSA. The subsequent anodic stripping voltammetric analysis of cadmium ion, released by acid from quantum dot, was conducted at an in situ prepared mercury film electrode. Under optimal conditions, the voltammetric current increased with the increasing of target IgG1 within a dynamic working range from 10 pg mL−1 to 100 ng mL−1. The limit of detection of this immunosensor was evaluated to 3.4 pg mL−1 at 3sblank criterion. The precision, selectivity and method accuracy were acceptable. Analysis of human serum samples revealed good accordance with the results obtained by commercial enzyme-linked immunosorbent assay method. Importantly, this concept offers promise for cost-effective analysis of low-abundance cancer biomarkers without the need of natural enzymes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.