Abstract

AbstractThe production of H2 has aroused considerable attention worldwide as a renewable and sustainable energy source for domestic, industrial, and automotive purposes. Currently, about 95 % of H2 is produced from the steam reforming of methane. However, this process leads to the burning of fossil fuels and emits greenhouse gases into the atmosphere. Water electrolysis is an effective strategy to produce H2 in high purity. Alkaline anion exchange membrane water electrolysis (AAEMWE) is preferred to proton exchange membrane water electrolysis (PEMWE) because of the flexibility to be able to use cheaper membranes as separators and non‐noble electrocatalysts. However, the sluggish oxygen evolution reaction (OER) kinetics in AAEMWE is a bottleneck for water splitting efficiency and decreases the overall performances. Now, a novel nickel and iron graphene‐nanoplatelets‐supported metal‐organic framework‐based electrocatalyst has been developed that shows excellent durability and record‐high current density for alkaline electrolysis that outperforms the state‐of‐the‐art OER electrocatalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.