Abstract
Fabrication of nonlinear elastic materials that resemble biological tissues remains a challenge in biomaterials research. Here, a new fabrication protocol to produce elastomeric fibrous scaffolds was established, using the core/shell electrospinning technique. A prepolymer of poly(xylitol sebacate) with a 2:5mol ratio of xylitol:sebacic acid (PXS2:5) was first formulated, then co-electrospun with polyvinyl alcohol (PVA – 95,000Mw). After cross-linking of core polymer PXS2:5, the PVA shells were rinsed off in water, leaving a porous elastomeric network of PXS2:5 fibres. Under aqueous conditions, the PXS2:5 fibrous scaffolds exhibited stable, nonlinear J-shaped stress–strain curves, with large average rupture elongation (76%) and Young׳s modulus (~1.0MPa), which were in the range of muscle tissue. Rupture elongation of PXS2:5 was also much higher when electrospun, compared to 2D solid sheets (45%). In direct contact with cell monolayers under physiological conditions, PXS2:5 scaffolds were as biocompatible as those made of poly-l-lactic acid (PLLA), with improvements over culture medium alone. In conclusion, the newly developed porous PXS2:5 scaffolds show tissue-like mechanical properties and excellent biocompatibility, making them very promising for bioengineering of soft tissues and organs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Mechanical Behavior of Biomedical Materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.