Abstract
With advances in computing power, stereo vision has become an essential part of navigation applications. However, there may be instances wherein insufficient image data precludes the estimation of navigation parameters. Earlier, a novel vision-based velocity estimation method was developed by the authors, which suffered from the aforementioned drawback. In this paper, the vision-based navigation method has been integrated with a unique low-cost reduced inertial sensor system to bridge the navigation gap using one gyroscope and two accelerometers along with the inputs from wheel speed sensors. The integrated system is based on the extended Kalman filter and was tested on three trajectories with the introduction of vision data gaps. The system showed promising results for autonomous land vehicle applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Instrumentation and Measurement
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.