Abstract

Using monolayers of intestinal cells, we reported that upregulation of inducible nitric oxide synthase (iNOS) is required for oxidative injury and that activation of NF-kappaB is key to cytoskeletal instability. In the present study, we hypothesized that NF-kappaB activation is crucial to oxidant-induced iNOS upregulation and its injurious consequences: cytoskeletal oxidation and nitration and monolayer dysfunction. Wild-type (WT) cells were pretreated with inhibitors of NF-kappaB, with or without exposure to oxidant (H(2)O(2)). Other cells were transfected with an IkappaBalpha mutant (an inhibitor of NF-kappaB). Relative to WT cells exposed to vehicle, oxidant exposure caused increases in IkappaBalpha instability, NF-kappaB subunit activation, iNOS-related activity (NO, oxidative stress, tubulin nitration), microtubule disassembly and instability (increased monomeric and decreased polymeric tubulin), and monolayer disruption. Monolayers pretreated with NF-kappaB inhibitors (MG-132, lactacystin) were protected against oxidation, showing decreases in all measures of the NF-kappaB --> iNOS --> NO pathway. Dominant mutant stabilization of IkappaBalpha to inactivate NF-kappaB suppressed all measures of the iNOS/NO upregulation while protecting monolayers against oxidant insult. In these mutants, we found prevention of tubulin nitration and oxidation and enhancement of cytoskeletal and monolayer stability. We concluded that 1) NF-kappaB is required for oxidant-induced iNOS upregulation and for the consequent nitration and oxidation of cytoskeleton; 2) NF-kappaB activation causes cytoskeletal injury following upregulation of NO-driven processes; and 3) the molecular event underlying the destabilizing effects of NF-kappaB appears to be increases in carbonylation and nitrotyrosination of the subunit components of cytoskeleton. The ability to promote NO overproduction and cytoskeletal nitration/oxidation is a novel mechanism not previously attributed to NF-kappaB in cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.