Abstract

Fabrication of deep holes (depth to diameter ratio >10) using electrical discharge drilling (EDD) has gained momentum in the areas of aerospace, automotive and biomedical industries. However, formation of recirculation zones in flushing channel causes accumulation of debris particles at higher depths of drilling. This leads to secondary discharges within the flushing channel resulting in excessive tool wear, dimensional inaccuracy and hole tapering. The present paper proposes a novel tool geometry having orifices at the bottom end of tool electrode with an aim to improve debris evacuation. The effectiveness of proposed method is established through CFD simulations and experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.