Abstract

Herein, the impact of using dried Caulerpa prolifera nanoparticles and silica-coated Caulerpa prolifera nanoparticles for the removal of phenol from aqueous solution has been investigated. The chemical structure and morphology of both dried Caulerpa prolifera nanoparticles and silica-coated Caulerpa prolifera nanoparticles were characterized by using Fourier-transform infrared spectroscopy (FTIR), Brunauer Emmett Teller (BET), scanning electron microscopy (SEM), and transmission electron microscope (TEM). Batch mode experiments were conducted depending on adsorbent dosage, pH, contact time, and initial phenol concentration. In order to investigate the adsorption mechanism of the phenol molecules to the surface of the nanoparticles, kinetic models including pseudo-first-order, pseudo-second-order, and intra-particle diffusion models were executed. To describe the equilibrium isotherms, Langmuir and Freundlich isotherms were analyzed. However, the Langmuir isotherm model was agreed to be more significant with the obtained experimental data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.