Abstract

BackgroundSedation indicators based on a single quantitative EEG (QEEG) feature have been criticised for their limited performance. We hypothesised that integration of multiple QEEG features into a single sedation-level estimator using a machine learning algorithm could reliably predict levels of sedation, independent of the sedative drug used. MethodsIn total, 102 subjects receiving propofol (N=36; 16 male/20 female), sevoflurane (N=36; 16 male/20 female), or dexmedetomidine (N=30; 15 male/15 female) were included in this study of healthy volunteers. Sedation level was assessed using the Modified Observer's Assessment of Alertness/Sedation (MOAA/S) score. We used 44 QEEG features estimated from the EEG data in a logistic regression algorithm, and an elastic-net regularisation method was used for feature selection. The area under the receiver operator characteristic curve (AUC) was used to assess the performance of the logistic regression model. ResultsThe performances obtained when the system was trained and tested as drug-dependent mode to distinguish between awake and sedated states (mean AUC [standard deviation]) were propofol=0.97 (0.03), sevoflurane=0.74 (0.25), and dexmedetomidine=0.77 (0.10). The drug-independent system resulted in mean AUC=0.83 (0.17) to discriminate between the awake and sedated states. ConclusionsThe incorporation of large numbers of QEEG features and machine learning algorithms is feasible for next-generation monitors of sedation level. Different QEEG features were selected for propofol, sevoflurane, and dexmedetomidine groups, but the sedation-level estimator maintained a high performance for predicting MOAA/S independent of the drug used. Clinical trial registrationNCT 02043938; NCT 03143972.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.