Abstract

AbstractFlow and heat transfer in a bidisperse gas–solid system with freely moving spheres  are simulated by particle‐resolved direct numerical simulation (PR‐DNS). Gas–solid coupling is enforced by the direct‐forcing immersed boundary method. Compard with the DNS database, it is found that the existing polydisperse drag correction model developed from static systems combined with various monodisperse drag models underestimates the drag force on dynamic arrays of particles. The existing Nusselt number correction model developed from static systems combined with various monodisperse models overestimates the Nusselt number of dynamic arrays of particles. Sensitivity analysis indicates that the effects of the granular temperature on the drag force and Nusselt number are negligible. Novel polydisperse drag and Nusselt number models are derived based on the database. The advantages of the derived polydisperse drag and Nusselt number models are demonstrated and confirmed by comparing the results of the computational fluid dynamics–discrete element method using various drag and Nusselt number models with experimental or additional PR‐DNS data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call