Abstract

Melanoma is one of the most lethal forms of skin cancer and its incidence is continuing to rise in the United States. Therefore, novel mechanism and target-based strategies are needed for the management of this disease. SIRT1, a NAD(+)-dependent class III histone deacetylase, has been implicated in a variety of physiological processes and pathological conditions. We recently demonstrated that SIRT1 is upregulated in melanoma and its inhibition by a small-molecule, tenovin-1, inhibits cell proliferation and clonogenic survival of melanoma cells, possibly via activating p53. Here, we employed a gel free quantitative proteomics approach to identify the downstream effectors and targets of SIRT1 in melanoma. The human malignant melanoma, G361 cells were treated with tenovin-1 followed by protein extraction, in liquid trypsin digestion, and peptide analyses using nanoLC-MS/MS. A total of 1091 proteins were identified, of which 20 proteins showed significant differential expression with 95% confidence interval. These proteins were subjected to gene ontology and Ingenuity Pathway Analysis (IPA) to obtain the information regarding their biological and molecular functions. Real-Time qRT-PCR validation showed that five of these (PSAP, MYO1B, MOCOS, HIS1H4A and BUB3) were differentially expressed at mRNA levels. Based on their important role in cell cycle regulation, we selected to focus on BUB family proteins (BUB3, as well as BUB1 and BUBR1) for subsequent validation. The qRT-PCR and immunoblot analyses showed that tenovin-1 inhibition of SIRT1 resulted in a downregulation of BUB3, BUB1 and BUBR1 in multiple melanoma cell lines. Since tenovin-1 is an inhibitor of both SIRT1 and SIRT2, we employed lentivirus mediated silencing of SIRT1 and SIRT2 in G361 cells to determine if the observed effects on BUB family proteins are due to SIRT1- or SIRT2- inhibition. We found that only SIRT1 inhibition resulted in a decrease in BUB3, BUB1 and BUBR1. Our study identified the mitotic checkpoint regulator BUB family proteins as novel downstream targets of SIRT1. However, further validation is needed in appropriate models to confirm our findings and expand on our observations.

Highlights

  • Melanoma is one of the most lethal forms of skin cancer

  • We have recently shown that the class III histone deacetylase (HDAC) SIRT1 is upregulated in human melanoma cells and tissues, and its small molecule www.impactjournals.com/oncotarget inhibition by tenovin-1 causes anti-proliferative responses, which are mediated via activation of p53, in human melanoma cells [3, 4]

  • The major objective of this study was to identify the downstream targets of the class III HDAC SIRT1 in melanoma cells using gel-free proteomics

Read more

Summary

Introduction

Melanoma is one of the most lethal forms of skin cancer. In the United States, 76,690 new cases of melanoma and 9,480 melanoma-related deaths were predicted for the year 2013 [1]. We have recently shown that the class III histone deacetylase (HDAC) SIRT1 is upregulated in human melanoma cells and tissues, and its small molecule www.impactjournals.com/oncotarget inhibition by tenovin-1 causes anti-proliferative responses, which are mediated via activation of p53, in human melanoma cells [3, 4]. This is an interesting finding because the sirtuin (SIRT) family of NAD(+)-dependent protein deacetylases has been implicated in a wide range of biological processes, including genetic control of aging, regulating transcription, apoptosis, stress resistance and energy efficiency during low-calorie conditions [5,6,7]. This makes it more important to study, in detail, the downstream targets of SIRT1

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.