Abstract
The notion of spherical fuzzy sets (SFSs) is one of the most effective ways to model the fuzzy information in decision-making processes. The sum of squares of membership, neutral, and nonmembership degrees in SFSs lies in the interval [0, 1] and accommodates more uncertainties. Henceforth, in this article, the idea of spherical cubic fuzzy sets (SCFSs) is introduced, which is the generalization of SFSs. Spherical cubic fuzzy set is the combination of spherical fuzzy sets and interval-valued spherical fuzzy sets. The membership, neutral, and nonmembership degrees in an SCFS are cubic fuzzy numbers (CFNs). Consequently, this set outperforms the pre-existing structures of fuzzy set theory. Moreover, some fundamental operations for the comparison of two spherical CFNs are defined such as score function and accuracy function. Further, several new operations through Dombi t-norm and Dombi t-conorms are characterized to get the best results during the decision criteria. Furthermore, spherical cubic fuzzy Dombi weighted averaging (SCFDWA), SCFD ordered weighted averaging (SCFDOWA), SCFD hybrid weighted averaging (SCFDHWA), SCFD weighted geometric (SCFDWG), SCFD ordered weighted geometric (SCFDOWG), and the SCFD hybrid weighted geometric (SCFDHWG) aggregated operators are discussed, and their characteristics are examined. In addition, some of the operational laws of these operators are defined. Also, a decision-making approach based on these operators is proposed. Since the proposed methods and operators are the generalizations of the existing methods and operators, therefore, these techniques produce more general, accurate, and precise results as compared with existing ones. Finally, a descriptive example is given in order to describe the validity, practicality, and effectiveness of the proposed methods.
Highlights
Summary
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.