Abstract
The Mcm10 protein is essential for chromosomal DNA replication in eukaryotic cells. We purified the Saccharomyces cerevisiae Mcm10 (ScMcm10) and characterized its DNA binding properties. Electrophoretic mobility shift assays and surface plasmon resonance analysis showed that ScMcm10 binds stably to both double strand (ds) DNA and single strand (ss) DNA. On short DNA templates of 25 or 50 bp, surface plasmon resonance analysis showed a approximately 1:1 stoichiometry of ScMcm10 to dsDNA. On longer dsDNA templates, however, multiple copies of ScMcm10 cooperated in the rapid assembly of a large, stable nucleoprotein complex. The amount of protein bound was directly proportional to the length of the DNA, with an average occupancy spacing of 21-24 bp. This tight spacing is consistent with a nucleoprotein structure in which ScMcm10 is aligned along the helical axis of the dsDNA. In contrast, the stoichiometry of ScMcm10 bound to ssDNA of 20-50 nucleotides was approximately 3:1 suggesting that interaction with ssDNA induces the assembly of a multisubunit ScMcm10 complex composed of at least three subunits. The tight packing of ScMcm10 on dsDNA and the assembly of a multisubunit complex on ssDNA suggests that, in addition to protein-DNA, protein-protein interactions may be involved in forming the nucleoprotein complex. We propose that these DNA binding properties have an important role in (i) initiation of DNA replication and (ii) formation and maintenance of a stable replication fork during the elongation phase of chromosomal DNA replication.
Highlights
MCM10 is a ubiquitous, conserved gene essential for DNA replication in eukaryotes
To better understand how Mcm10 functions in DNA replication we undertook a biochemical characterization of the Saccharomyces cerevisiae Mcm10 (ScMcm10) protein
We showed that ScMcm10 has distinct DNA binding properties for single- and double-stranded DNA
Summary
MCM10 is a ubiquitous, conserved gene essential for DNA replication in eukaryotes. It was first discovered in yeast genetic screens designed to detect mutants defective in DNA synthesis and minichromosome maintenance [1, 2]. The tight packing of ScMcm10 on dsDNA and the assembly of a multisubunit complex on ssDNA suggests that, in addition to protein-DNA, protein-protein interactions may be involved in forming the nucleoprotein complex. A standard DNA binding assay for EMSA analysis (20 l) contained Buffer H supplemented with BSA (1 mg/ml), øX174 RFI DNA carrier DNA (50 ng), 32P-labeled DNA substrate (2– 4 ng), and purified ScMcm10 protein (0.1– 0.4 g of the S-Sepharose fraction, unless indicated otherwise).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.