Abstract

Dihydro-1,3,2H-benzoxazines (or benzoxazine monomers) are a class of compounds that have been widely utilized in many areas such as the production of the functional polymers and optoelectronic materials. The structure variety of the benzoxazines plays a vital role in their desired properties. The effort of synthesizing functionalized benzoxazines from bioresources is of interest for sustainable development. Herein, we report the synthesis of the novel benzoxazine monomer referred to as 3-(furan-2-ylmethyl)-6-methyl-3,4-dihydro-2H-benzo[e][1,3]oxazine or benzoxazine (I) from a one-pot Mannich reaction using p-cresol, paraformaldehyde, and furfurylamine (a bio-derived amine). An X-ray crystallographic study was performed at low temperature (100 K) to obtain the structural characteristics of the benzoxazine (I). The result reveals that the oxazine ring adopts a half chair conformation to locate all the members of the benzoxazine ring as planar as possible by employing the expansion of the bond angles within the ring. Apart from the structural parameters, the intermolecular interactions were also examined. It was found that the significant interactions within the crystal are C–H···N, C–H···O, and the C–H···π interactions. The C–H···N interactions link the benzoxazine (I) molecules into an infinite molecular chain, propagating along the [100] direction. Hirshfeld surfaces and their corresponding fingerprint plots were comprehensively analyzed to confirm and quantify the significance of these interactions. Moreover, the photophysical properties of the benzoxazine (I) were investigated in solvents with various polarities. The corresponding relations between the structural features, frontier molecular orbitals, and absorption-and-emission characteristics were proposed and explained according to the DFT and TD-DFT calculations.

Highlights

  • Dihydrobenzoxazines are versatile compounds used in many areas such as thermoset manufacture [1,2,3], optoelectronic materials [4,5], antimicrobial agents [6,7,8,9,10], and medicinal applications [11,12,13]

  • Among different isomers of dihydrobenzoxazines (Scheme 1), 3,4dihydro-1,3,2H-benzoxazines are the most common as they can be readily synthesized by Mannich reactions using three reagents, namely phenols, Crystals 2021, 11, 568 (Scheme 1), 3,4-dihydro-1,3,2H-benzoxazines are the most common as they can be readily synthesized by Mannich reactions using three reagents, namely phenols, paraformaldehyde, and amines

  • The attempt to locate the members of the 1,3-2H-benzoxazine ring in the same plane made the oxazine ring adapt a half deviated atom was N1, which had a deviation of 0.387(2) Å from the mean plane of the benzoxazine [62,63]

Read more

Summary

Introduction

Dihydrobenzoxazines are versatile compounds used in many areas such as thermoset manufacture [1,2,3], optoelectronic materials [4,5], antimicrobial agents [6,7,8,9,10], and medicinal applications [11,12,13]. Among different isomers of dihydrobenzoxazines (Scheme 1), 3,4dihydro-1,3,2H-benzoxazines (or benzoxazine monomers) are the most common as they can be readily synthesized by Mannich reactions using three reagents, namely phenols, Crystals 2021, 11, 568. (Scheme 1), 3,4-dihydro-1,3,2H-benzoxazines (or benzoxazine monomers) are the most common as they can be readily synthesized by Mannich reactions using three reagents, namely phenols, paraformaldehyde, and amines. A variety of starting materials can be Tpumnc[3sabdtmcr1uoh0zeuahsii9aosm]icaecnrimnt.,klhsadr2ziepTpeeanfe0ocflaorhoccir]tusxosentr,oshetyealmipxirsdueavtnrzebieeeriesbeaitbisersnashnlldtetntieddaeiniefhnrecezonsevsaomeszssorehdbaiv,arocxgs[moylnsesxea2,eanludltmawn1zleaa.decze–ictlgbTeehanii,iu2scneeneldhea4tlollsaentaaiien]rassnmsz,bcrcrrdsyoeogoatidfdalrlnspmxnsiaieitkietistacodonmxoihsetpzelisinpiyetbonhsitighnnhprsbslccin[oeeeegeeiroe1ttspoiisshn4aaembvr,.me–tlszeeealirlao1Aononeaitxnst9slixawgnzcheeti]davnosiedc,sewsc.zuapixggron[aiAersmalto2nrcngaicilz1oedrolaeriatio–etdinsndntlycdsa2nodaiewsoims4tetolotiirrit]sdaoisnrffleeh,tipbntaoghcsaeessopitisahntinxlenmirlaliaeaiosdyltsarbnryninaebtfeflp,idhiiolxonlescbnocriicrrnyatooegewg[emyalz1nnmahpppsos4mztigarttinia–xpoinsoinrsao1nnacxelicmtgitn9nzitenaeceeesi]igaezraigscr.nn,nmrlitoitAcntg[eaisehriao2fssoelsndrlstn5snsetoootod–sd[sxwcsdp1fc3i,fiiaiatho9bdooi0stinmnth,ousa]inrah2ld.semnrcteib0eatephTac]emyesmcs,ehlhnsnatludrfoayeaieusgiofnsnenlr,nsoimrereisentbiryescaectdimeeetireuaarpniaenrrecdliplapofrbmnzsasosvrnslutl,orotiriesabccsrstnxcdmenoeeaudeagonsennttmcziiffiasoonegh[zooiig2nlevpteogtrneha5ehnenmetxncsis–sesstlt--,-. Athme othnrgeethsetarthtirnege sstuabrstitnagncseusbfsotarnbceenszfooxrabzeinnezopxraozdinuectpiornods,uocntiloynps,hoennloyl pahnednaoml ainned daemriinveatdiveersivcaatnivbese coabnbtaeinoebdtafirnoemd fnroamturnaaltruersaolurrecseosu. rcReesc.eRnetclye,ntthlye,rethaerree saerveesreavlerreapl orertpsoortns tohnetfhaebfraicbartiicoantioonf obfenbzeonxzaozxianzeisnaens danpdolpyobleynbzeonxzaozxinazeisnveisavbiiao-bbioas-bedaspedhepnhoelnsoolusrcoeusrc[3e4s–[4314]–.4M1]o. rMeoovreero,vthere, tuhteiliuzatitliioznatoiof nbioo-fdbeiroiv-deedripvreimd aprryimamariyneasminintehse isntruthcetusrtarludcetusirganl dofesbiegnnzooxfabzeinnezsoxsuazchinaess ssutecahryalsasmteianreyl[a3m7]i,ndee[h3y7d],rdoeahbyiedtryolaambieintyela[4m2]in, aen[4d2f]u, arnfudryfularmfuirnyela[m40in,4e1[,4430,,4441],4h3a,4v4e] bheaevne breepeonrtreedp.orAtemdo. nAgmdoifnfegrednitffbeiroe-nbtasbeido-bparsimedarpyraimmairnyesa, mfuirnfeusr,ylfaumrfuinreylhaamsinbeeehnausbbiqeueniutobuiqsluyiteomupsllyoyeemdpilnoytheedpinretphaeraptrieopnaoraf tbioennzoofxbaezninzeosxaanzidnepsoalynbdenpzoolyxbaezninzeosxsaiznicneesitscianncebiet (bsfdrmtcsrbzcoacIoueetuearosenee)rpyperrn,bnnxvaatfcso3otsaipazzeubhhtgr-trziomloarr[ateanetohie(ylexxennnfptopsdaspldoaufcieatidtozazcphrenrrbmriraeaitrauytgnynwheelliiniscrcgeesenptibea-tna,ihhcs2uetrpnrelosahteo-d-frnasoyflydvpreeplo.Urzrnoplyeereert)ooEomtl.rremwrsSbhfoxilpvdtypv.ieeiatpaekeeneDheonsfztrenresutdehbeldzireth,lynsriyytoytplnbeeibfyhelxebuaasseo]etosaier-tsnnrmonz6hrhtuzynysdzmeez-iaeuogbnlzomndpoasonehcetcxexomhfhneUexobaarrtsetrtaomizhteza.hets(nSzoimeaosiIeviynee.in)fzninnetl,nrepeeE-fhreDa3utfdra(tnehso3ps,roIorelr4e)eeu-ffhsmp-r[rrusaeaipndo(ygoeasirrxfandepsysimruaetalmheicts.thlrcm[ms,yati.a4oaofciltoTrduvianE5aleirdcknnhbroe]rln-vhepe.oe2feiiputellulsmr-F-ogyirgn2yoitroofbwrtoihHaalpserot)peftttllhomesh-u,oeytnep1rherrooapErzteh,keiitn3niu1obsnsatxioe-h0deexgaleesarbthssyaieohrvmoemamgszlahpfatnf]vuohisyisla-ehsnznteuo6rececshyoeen-hvtehr[debmoxsd-,ee4apaieeamat1rp5cneptdrehvzas0a]ootioonrdie.lechlnresvtnaolefyfthrpppoeFaloouedbele,eparlop-dmusrsurofcb3rifreernrmtneupe,iteoraoi4odh-gvvrrepratm-ta-y.ehcdhreeblednTltthieiarsaoitfssdhohtehyusmmtibgeyvseiaeenresrd.erdaidebsftxenosunw,tlhiraHsbaieelunorzgepiusmori-ytpoo-eosdnoiboir2aleexrs-inkieaslrHnlebfissayertsm,,haeaaizc-pbavai1nasatiiteomnfnnhen,ehvincon3rtddddeeeeeeststr-psthruotcotuprhaylsfiecaatluprreospaenrdtieins.teHrmeroe,letchuelacrryisnttaelrsatcrtuiocntusrreeloaftethdetobeintszpoxroapzienretie(Is)aisndthroeraocutigvhitlyy. eInxaamddiniteidont,oqoubasnetruvme cthheemsiigcnalifcicaalcnutlasttriounctsuornalfrfoeanttuierresmaonledcuinlaterromrboilteacluslaanrdinotpertiamctiizoends rsetrluatcetdurtaol pitasrapmroepteerrtsieasreacnadrrrieeadcotiuvtitayn. dInidaedndtiifitieodn,toquinavnetustmigactheetmheicmaleccahlacnuilsamtioonfsthone photo-absorption and emission of the benzoxazine (I)

Materials and Methods
Photophysical Studies
Computational Details
Results and Discussion
C2 C3 C4
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call