Abstract
Semiconducting conjugated polymers have recently attracted significant interest as amplifying media for solid-state lasers due to their functional photo-physical properties and simple fabrication. Distributed feedback (DFB) cavities are proving to be the most attractive for polymer lasers, since they can combine the properties of transverse optical pumping, low threshold and practical output beams. To date, in most polymer DFB lasers the feedback is provided by second order diffraction. This has the advantage of surface emission, though it also imposes extensive scattering losses. In this work, we present the use of alternative structures that attempt to reduce the threshold of polymer DFB lasers, and also achieve dual wavelength operation. The former was addressed with cavities formed by alternative symmetries of the Brillouin zone of a square lattice. Using the diagonal ΓM symmetry first order feedback was attained. The threshold energy was thus reduced by almost an order of magnitude as compared with the more commonly used ΓX symmetry of second order square gratings. Finally, we show that two lasing wavelengths may be set independently in a semiconducting polymer laser by using a doubly periodic (i.e. Moiré) DFB grating.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.