Abstract
A new series of triclosan (TCL)-mimicking diaryl ether derivatives 7–25 were synthesized and evaluated as inhibitors of enoyl acyl carrier protein reductase InhA enzyme. In addition, these derivatives were screened as inhibitors of drug-susceptible (DS), multidrug-resistant (MDR), and extensive drug-resistant (XDR) Mycobacterium tuberculosis (MTB) strains. Most compounds exihibted superior anti-TB activities and improved ClogP compared to TCL as a standard drug. The present work has led to the identification of compounds 14, 19 and 24 which possess remarkable activities against DS, MDR and XDR MTB strains with MIC values of 1.95, 3.9 and 15.63 µg/ml, respectively for compound 14, 1.95, 3.9 and 7.81 µg/ml, respectively for compound 19 and 0.98, 1.95 and 3.9 µg/ml, respectively for compound 24. Most compounds did not exhibit toxicity to HePG2 normal cell line. Compounds 14, 19 and 24, presenting the best MIC values, were further evaluated as inhibitors of InhA enzyme. They showed high binding affinities in the micromolar range with IC50 values of 1.33, 0.6, and 0.29 µM for compounds 14, 19, and 24, respectively. Furthermore, molecular docking approach was utilized to understand the difference in bioactivities between the new compounds. In particular, the results revealed strong binding interactions and high docking scores of compounds 14, 19 and 24, which could correlate with their high activities. Mainly, the molecular modelling study of compound 24 provides an excellent platform for understanding the molecular mechanism regarding InhA inhibition. Thus, compound 24 could be a lead compound for future development of new antitubercular drugs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.