Abstract

Visceral leishmaniasis is a neglected tropical disease with the highest mortality among different forms of leishmaniasis manifestation in humans. The disease is caused by the parasitic protists Leishmania donovani and Leishmania infantum, and treatments remain unsuitable due to high costs, complicated administration, lack of efficacy, variable patient susceptibility, toxic side effects, and rising parasitic resistance. Herein, we report a structure-activity relationship (SAR) exploration of the diacyl-hydrazide scaffold identified to have antiparasitic activity from a high-throughput screen against L. donovani, Trypanosoma cruzi, and Trypanosoma brucei. This SAR study revealed new structural insights into this scaffold related to bioactivity resulting in a new series of lead compounds with nanomolar activity against L. donovani and no toxicity against human THP-1 macrophages. These optimized diacyl-hydrazide compounds set the stage for future drug development and hold promise for a new treatment avenue for visceral leishmaniasis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.