Abstract
An adaptive cardiac resynchronization therapy (aCRT) algorithm has been described for synchronized left ventricular (LV) pacing and continuous optimization of cardiac resynchronization therapy (CRT). However, there are few algorithmic data on the effect of changes during exercise.Methods and Results:We enrolled 27 patients with availability of the aCRT algorithm. Eligible patients were manually programmed to optimal atrioventricular (AV) and interventricular (VV) delays by using echocardiograms at rest or during 2 stages of supine bicycle exercise. We compared the maximum cardiac output between manual echo-optimization and aCRT-on during each phase. After initiating exercise, the optimal AV delay progressively shortened (P<0.05) with incremental exercise levels. The manual-optimized settings and aCRT resulted in similar cardiac performance, as demonstrated by a high concordance correlation coefficient between the LV outflow tract velocity time integral (LVOT-VTI) during each exercise stage (Ex.1: r=0.94 P<0.0008, Ex.2: r=0.88 P<0.001, respectively). Synchronized LV-only pacing in patients with normal AV conduction could provide a higher LVOT-VTI as compared with manual-optimized conventional biventricular pacing at peak exercise (P<0.05). The aCRT algorithm was physiologically sound during exercise by patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Circulation journal : official journal of the Japanese Circulation Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.