Abstract
Erthesina fullo (Thunberg, 1783) is an economically important heteropteran species in China. Since only three nucleotide sequences of this species (COI, 16S rRNA, and 18S rRNA) appear in the GenBank database so far, no analysis of the molecular mechanisms underlying E. fullo’s resistance to insecticide and environmental stress has been accomplished. We reported a de novo assembled and annotated transcriptome for adult E. fullo using the Illumina sequence system. A total of 53,359,458 clean reads of 4.8 billion nucleotides (nt) were assembled into 27,488 unigenes with an average length of 750 bp, of which 17,743 (64.55%) were annotated. In the present study, we identified 88 putative cytochrome P450 sequences and analyzed the evolution of cytochrome P450 superfamilies, genes of the CYP3 clan related to metabolizing xenobiotics and plant natural compounds, in E. fullo, increasing the candidate genes for the molecular mechanisms of insecticide resistance in P450. The sequenced transcriptome greatly expands the available genomic information and could allow a better understanding of the mechanisms of insecticide resistance at the systems biology level.
Highlights
To understand the diversification and evolution of life, especially for diversified radiated insects, more transcriptomic data for non-model organisms is crucial
A normalized library of adult E. fullo was sequenced with the Illumina Hiseq 2000 system, which generated 53,359,458 clean reads and a total of 4,802,351,220 nucleotides
After mapping back to contigs and extending, we obtained 27,488 unigenes with a mean length of 750 bp and N50 value of 1185 bp owing to the help of pair-end reads
Summary
To understand the diversification and evolution of life, especially for diversified radiated insects, more transcriptomic data for non-model organisms is crucial. This is a serious situation for the Heteroptera group, which has no important model organism. The transcriptomic data of very few species has been reported [1,2,3,4,5]. With the amazing development of high-throughput sequencing technology and sharp declines of the cost per species, transcriptomic analysis is becoming a possible and efficient way to achieve large-scale genetic data of insect genome with high heterozygosity at low cost. The transcriptome of Erthesina. fullo will be critical for further
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.