Abstract

In this paper, a new design of optical channel drop filter based on two- dimensional photonic crystal ring resonators with triangular lattice is proposed. The rods of this structure is silicon with the refractive index 3.46 and the surrounding environment is air with the refractive index of 1.The widest photonic band gap obtained is for filling ratio of r/a = 0.2. The filter’s transmission spectrum is calculated using the two-dimensional (2D) finite-difference time-domain (2D-FDTD) numerical method. The simulation shows 100% dropping efficiency and suitable quality factor at 1519.4 nm wavelength achieved for this filter. Also, in this paper, we investigate parameters which have an effect on resonant wavelength and transmission spectrum in this CDF, such as refractive index of inner rods and whole of dielectric rods of the structure. The overall size of the structure is small that is 14 μm × 14μm which is suitable for photonic integrated circuits (PIC) and optical communication network applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.