Abstract

This study presented a novel liquid-cooled heat sink based on constructal theory. An experiment was conducted to investigate the influence of boundary conditions, such as the mass flow rate (ṁ), on heat transfer rate (Qin) and pressure drop. Five cylinder heater cartridges were used in the experiment for 11 different mass flow rates (0.008292 <ṁ (kg/s) < 0.03307).Through numerical simulation, the effects of changing the number of clusters on heat transfer and pressure drop were studied. The results showed that the optimal combination of pressure drop and Nusselt number occurs in four clusters. According to the results, increasing the number of clusters can increase the Nusselt number by up to 11.98% and 13.62% for the highest (ṁ = 0.03307 kg/s) and lowest (ṁ = 0.008292 kg/s) mass flow rates, respectively. This work may lay the foundation for creating the next generation of thermal management systems for compact heat sources, such as the CPU in a self-driving car, robots and high-performance computers (HPC).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.