Abstract
In this paper we present a novel method for deseasonalizing TOC data using non-linear models, with evolutionary computation techniques, and its performance with a neural network as regression approach. Specifically, the proposed deseasonalization method uses an evolutionary programming (EP) approach to carry out a curve fitting problem, where a given function model is optimized to be as similar as possible to an objective curve (a real TOC measurement in this case). Different non-linear models are proposed to be optimized with the EP algorithm. In addition, we test the possibility of deseasonalizing the TOC measurement and also the meteorological input data. The deseasonalized series is then used to train a neural network (multi-layer perceptron). We test the proposed models in the prediction of several TOC series in the Iberian Peninsula, where we carry out a comparison against a reference deseasonalizing model previously proposed in the literature. The results obtained show the good performance of some of the deseasonalizing models proposed in this paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Atmospheric and Solar-Terrestrial Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.