Abstract
Mycoplasmas are unable to synthesize purine and pyrimidine bases de novo. Therefore, salvage of existing nucleosides and bases is essential for their survival. Four mycoplasma species were studied with regard to their ability to phosphorylate deoxynucleosides. High levels of thymidine kinase (TK), deoxycytidine kinase (dCK), deoxyguanosine kinase (dGK) and deoxyadenosine kinase (dAK) activities were detected in extracts from Mycoplasma pneumoniae, Mycoplasma mycoides subsp. mycoides SC (M. mymySC), Acholeplasma laidlawii (A. laidlawii) and Mycoplasma arginini (M. arginini). Nucleoside phosphotransferase activities were found at high levels in A. laidlawii and low levels in M. arginini. Pyrophosphate-dependent deoxynucleoside kinase activities were detected mainly in A. laidlawii and M. mymySC extracts. Two open reading frames were identified in the M. mymySC genome; one showed 25% sequence identity to human dGK and the other one had about 26% sequence identity to human TK1. The M. mymySC dGK-like enzyme was cloned, expressed in Escherichia coli and affinity-purified. This enzyme phosphorylated dAdo, dGuo and dCyd, and the highest catalytic rate was with dAdo as substrate. Therefore, we suggest that this enzyme should be named deoxyadenosine kinase. The physiological role of mycoplasma dAK and TK may be to support the unusually large dATP and dTTP pools required for replication of mycoplasma genomes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.