Abstract

BackgroundHereditary multiple exostoses (HME), a rare genetic pediatric disorder, has a peculiar pathogenic mechanism. The results of previous studies have shown that HME is associated with mutations of the EXT1 and EXT2 genes at a molecular genetics level. In our study, two families who received therapy in the Department of Orthopedics of Shanghai Children’s Hospital between June, 2017 and November, 2018 were recruited, and a mutational analysis of the EXT1 genes was conducted to further elucidating the relationship between HME and EXT1.MethodsVenous blood samples were collected from individuals with HME and their families. Exon sequencing and RT-PCR were performed to comprehensively analyze 11 exons of the EXT1 gene.ResultsThe deletion of exon 7 and the 2397 G>T mutation in exon 7 caused deletion mutation and nonsense mutation only in the HME patients. The mutations in exon 7 were tested and verified by Sanger sequencing. RT-PCR showed that the mRNA expression of EXT1 was significantly decreased in the mutation samples compared with the normal samples, which exerted a great influence on the function of EXT1.ConclusionsThis study identified new mutation sites for the pathogenesis of HME and further clarified the relationship between HME and EXT1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.