Abstract

Background Machine vision faces significant challenges when applied to text recognition on cardboard packaging particularly due to multiple printing methods, irregular character shapes, and curved packaging surfaces. Methods This research introduces a novel deep learning application for recognizing binarized expiration date and batch code characters printed using multiple printing methods. The method, based on Region-based Convolutional Neural Networks (R-CNN), enables character recognition directly from in the images without the need for extracting handcrafted features. In detail, this approach performs character recognition by using the whole image as input, extracting and learning salient character features directly from the packaging surface images. Results The R-CNN model, with a precision of 91.1% and an F1 score of 80.9%, effectively recognizes manufacturing markings on pharmaceutical packages, with inconsistencies in the characters’ shapes. In a comparative experiment using the same dataset of images, the R-CNN model significantly outperformed Tesseract OCR, achieving much higher precision, recall, and F1 scores. Conclusions The results of this study reveal that the deep learning method outperforms the well-established optical character recognition method in recognizing text characters printed with different printing methods. Presented in this study, the deep learning method recognizes text characters with high precision. It is also suitable for recognizing text printed on curved surfaces, provided proper preprocessing is applied. The problem investigated in the study differs from previous research in the field, focusing on the recognition of texts printed with different printing methods. The research thus fills a gap in text recognition that existed in the research of the field. Furthermore, the study presents new ideas that will be utilized in our future research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.