Abstract
The microgrid enhances power grid reliability, resiliency, and sustainability, particularly in rural and islanded areas with limited manual network management. However, microgrid energy management systems (EMS), especially in islanded mode, require precise and reliable techniques to prevent severe blackouts/brownouts. This paper presents a novel deep deterministic policy gradient (DDPG) algorithm to schedule EMS for the autonomous microgrid in real-time. Our solution utilizes deep reinforcement learning (DRL) to converge model-free, sequential, random, and continuous characteristics of the microgrid. Additionally, we use reward shaping and transfer learning attachment to DDPG to support microgrid performance restrictions and minimize load shedding during peak hours. This solution offers an efficient training process comparable to other DRL techniques in simplicity, less computation, and supporting future system extension. Residential Gasa Island microgrid profile characteristics have been selected and tested to examine the proposed approach. Results demonstrate the high efficiency and accuracy of the proposed technique compared to existing methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.