Abstract
Hole transport materials (HTMs), as a critical role in the hole extraction and transportation processes, highly influence the efficiency and stability of perovskite solar cells (PSCs). Despite that several efficient dopant-free HTMs have been reported, there is still no clear structure-property relationship that could give instructions for the rational molecular design of efficient HTMs. Thus, in this work, a series of donor–acceptor-donor (D–A–D) type carbazole-based small molecules, TM-1 to TM-4, have been carefully designed and synthesized. By varing the electron acceptor unit from benzene to pyridine, pyrazine and diazine, their packing structure in single crystals, optical and electronic properties have shown a great difference. While as dopant-free HTM in p-i-n type PSCs, TM-2 improved the device photovoltaic performance with a power conversion efficiency from 15.02% (based on PEDOT:PSS) to 16.13%. Moreover, the unencapsulated device based on TM-2 retains about 80% of its initial efficiency after 500 h storage in ambient environment, showing the superior stability. • A series of donor–acceptor-donor (D–A–D) type carbazole-based small molecules, TM-1 to TM-4, have been designed and synthesized, showing a great difference in their single crystal packing structure, optical and electronic properties. • As the dopant-free HTM in p-i-n type PSCs, TM-2 improved the device photovoltaic performance with a power conversion efficiency from 15.02% (based on PEDOT:PSS) to 16.13% along with a superior stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.