Abstract

Compounds 1 (N1-(3-ethynylphenyl)-6-methyl-N5-(3-(6-(methylamino)pyrimidin-4-yl)pyridin-2-yl) isoquinoline-1,5-diamine) and 2 (N-(3-ethynylphenyl)-6,7-bis(2-methoxyethoxy)quinazolin-4-amine; Erlotinib/Tarceva) are kinase inhibitors that contain a terminal phenyl acetylene moiety. When incubated in the presence of P450 and NADPH, the anticipated phenyl acetic acid metabolite was formed. When 10 mM of N-acetyl-l-cysteine was added to the incubation mixtures, the phenyl acetic acid product was reduced and at 25 mM or higher concentration of NAC, formation of the phenyl acetic acid was abolished. Instead, the phenyl acetylene moiety lost a carbon and formed a benzaldehyde product. Other oxidation products incorporating one or more equivalents of NAC were also observed. The identities of the metabolites were characterized by MS and NMR. Addition of deferoxamine or ascorbic acid diminished the formation of the NAC influenced products. Similar products were also observed when 1 or 2 were incubated in P450 reactions supplemented with GSH, in Fenton reactions supplemented with NAC or GSH, and in peroxidase reactions supplemented with NAC. We propose the thiols act as a pro-oxidant readily undergoing a one-electron oxidation to form thiyl radicals which in turn initiates the formation of other peroxy radicals that drive the reaction to the observed products. These in vitro findings suggest that one-electron oxidation of thiols may promote the cooxidation of xenobiotic substrates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.