Abstract

In this paper, a novel controller based on the predictive technique has been introduced for a neutral-point-clamped grid-tied inverter. The aim of the developed method is to achieve a constant system switching frequency operation. The proposed method generates the voltage vector by nullifying the derivative of the cost function of a finite-set model predictive controller. The developed controller takes in action of injecting the desired grid current while a closed-loop space vector modulator regulates the capacitors voltages. A comparative study with a similar model predictive algorithm with constant switching frequency (MPC-CSF) is introduced and discussed in terms of computational complexity. Experimental results are provided to verify the performance and robustness of the new method over MPC-CSF with its ability of injecting a very low total harmonic distortion to the grid with almost unity power factor during normal and transient operations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call