Abstract

Acetazolamide is the drug of choice for glaucoma treatment in an emergency. However, it is not available in any topical formulation and it is available only as systemic tablets. Despite its efficiency as a drug in decreasing intraocular pressure, it has negative systemic effects as renal toxicity and metabolic acidosis. Moreover, it suffers from poor aqueous solubility and low corneal permeability limiting its ocular bioavailability and its use topically. Cubosomes have enormous advantages as a drug delivery system, most importantly, high surface area, thermal stability, and ability to encapsulate hydrophobic, amhiphilic, and hydrophilic molecules. Herein, we have exploited the unique properties of cubosomes as a novel nano-delivery system for acetazolamide as eye drops dosage form for glaucoma treatment. Different acetazolamide-loaded cubosomes have been developed and evaluated. The best-optimized formulation (F5), was cubic shaped structure, with an average particle size of 359.5 ± 2.8 nm, surface charge −10.8 ± 3.2 mV, and 59.8% entrapment efficiency. Ex-vivo corneal permeation studies have revealed a 4-fold increase in acetazolamide permeability coefficient compared to that stated in the literature. F5 showed superior therapeutic efficacy represented by a 38.22% maximum decrease in intraocular pressure vs. 31.14 and 21.99% decrease for the commercial Azopt® eye drops and Cidamex® tablets, respectively. It also exhibited higher (AUC0–10) compared to Azopt® eye drops and Cidamex® tablets by 2.3 and 3 times, respectively. F5 showed mean residence time 4.22 h vs. 2.36 and 2.62 h for Azopt® and Cidamex® with no eye irritation observed according to the modified Draize test. To the best of our knowledge, this is the first study for developing acetazolamide-loaded cubosomes as the topical delivery system for glaucoma treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.