Abstract

The development of passive NOx adsorbers with cost-benefit and high NOx storage capacity remains an on-going challenge to after-treatment technologies at lower temperatures associated with cold-start NOx emissions. Herein, Cs1Mg3Al catalyst prepared by sol–gel method was cyclic tested in NOx storage under 5 vol% water. At 100 °C, the NOx storage capacity (1219 μmol g−1) was much higher than that of Pt/BaO/Al2O3 (610 μmol g−1). This provided new insights for non-noble metal catalysts in low-temperature passive NOx adsorption. The addition of Cs improved the mobility of oxygen species and thus improved the NOx storage capacity. The XRD, XPS, IR spectra and in situ DRIFTs with NH3 probe showed an interaction between CsOx and AlOx sites via oxygen species formed on Cs1Mg3Al catalyst. The improved mobility of oxygen species inferred from O2-TPD was consistent with high NOx storage capacity related to enhanced formation of nitrate and additional nitrite species by NOx oxidation. Moreover, the addition of Mg might improve the stability of Cs1Mg3Al by stabilizing surface active oxygen species in cyclic experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.