Abstract

We report on a novel GaN photocathode structure that eliminates the use of Cs for photocathode activation. Development of such a photocathode structure promises reduced cost and complexity of the device, potentially with stable operation for a longer time. Device simulation studies suggest that deposition of Si delta-doped GaN on p-GaN templates induces sharp downward energy band bending at the surface, assisting in achieving effective negative electron affinity for GaN photocathodes without the use of Cs. A series of experiments has been performed to optimize the quality of the Si delta-doped layer to minimize the emission threshold of the device. This report includes significant observations relating the dependence of device properties such as emission threshold, quantum efficiency, and surface morphology on the Si incorporation in the Si delta-doped layer. An optimum Si incorporation has been observed to provide the minimum emission threshold of 4.1 eV for the discussed Cs-free GaN photocathodes. Photoemission (PE), atomic force microscopy (AFM), and secondary-ion mass spectroscopy (SIMS) have been performed to study the effect of growth conditions on device performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.