Abstract

Achieving a high volumetric energy density supercapacitor is of great significance for portable energy storage devices while still a major challenge. Herein, we design and fabricate self-supporting electrodes using CoZnNi oxyphosphide nanoarrays sandwiched graphene/carbon nanotube (CZNP/GC) film with highly exposed active sites. Benefitting from the modified electronic structures, high accessible surface areas, and the integrated structure, the well-designed CZNP/GC electrode exhibits an ultra-high volumetric capacitance of 2096.4 F cm−3 at a current density of 1 A g−1. Moreover, a high-performance negative electrode of carbon/rGO/CNTs (C/GC) is also fabricated using the same CoZn-metal-organic frameworks precursor. The assembled asymmetric supercapacitor CZNP/GC//C/GC displays an ultra-high volumetric energy density of 71.8 W h L−1 at 960 W L−1. After 6000 charge-discharge cycles, the device still maintains 85.6% of the original capacitance. The density functional theory calculation is studied and the negative adsorption energy proves that the OH– adsoption process onto the surface of as-prepared electrode is thermodynamically favorable, facilitating the electrochemical reaction. This work provides a new option in constructing tailorable electrodes with a well-defined hierarchical structure for supercapacitor and beyond.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.