Abstract
ABSTRACT Herein, a novel oxygen-enriched melting process for fly ash, which uses the biogas produced from the leachate of municipal solid waste incineration (MSWI) plants, is proposed to reduce the high cost of conventional fly ash – melting technology. The fly ash composition was estimated via X-ray fluorescence analysis; the six constituent elements detected in fly ash in the decreasing order of their content were calcium, chlorine, silicon, sulfur, sodium, and potassium. Based on literature and actual production data, the average yield of the leachate was 15% of the total waste entering the MSWI plants and the COD of leachate was 30,000–75,000 mg/L. The amount of biogas that can be used per ton of fly ash was calculated to be 62.0–157.0 m3. The analysis of melting thermal equilibrium revealed the amount of biogas required per ton of fly ash as 57.8 m3. The aforementioned research findings indicate that the biogas produced by MSWI plants can successfully meet the demands of the oxygen-enriched melting of fly ash produced in these plants. By establishing an oxygen-enriched-melting pilot platform, the pilot tests of melting were conducted on fly ash; the results revealed the good melting effects of fly ash. The X-ray diffraction analysis of the slag demonstrated that the content of the vitreous body met the technical requirements for glassy substances. Furthermore, the leaching toxicity test results revealed that heavy metals were well solidified in the slag. This study presents a novel fly ash – melting scheme for MSWI fly ash, namely, biogas oxygen-enriched melting strategy, which has the advantages of technical feasibility and cost-effectiveness. The proposed technique exhibits considerable prospects for widespread application in MSWI plants in China and can play an important role in the safe disposal of fly ash. Implications: In this paper, a low-cost melting method of municipal solid waste incineration(MSWI) fly ash is proposed. This method uses the biogas generated by MSWI plant itself as fuel for melting. Through research, it has been found that the production of biogas can meet the demand for fly ash melting. Adopting biogas as a molten fuel can significantly reduce the cost of melting, thereby significantly reducing the cost of fly ash melting. This study established a pilot scale platform for the melting of biogas and conducted pilot scale experiments on fly ash and additives. The experimental results showed that the melting system operated well and achieved the vitrification of fly ash. The leaching test results of the molten slag showed that heavy metals were well solidified in the slag. The research results can be extended to the MSWI plant for application, which can significantly reduce the cost of fly ash melting disposal, and has broad application prospects.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Air & Waste Management Association
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.